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Abstract. Most problems studied in artificial intelligence possess some
form of structure, but a precise way to define such structure is so far
lacking. We investigate how the notion of problem structure can be made
precise, and propose a formal definition of problem structure. The defini-
tion is applicable to problems in which the quality of candidate solutions
is evaluated by means of a series of tests. This specifies a wide range
of problems: tests can be examples in classification, test sequences for a
sorting network, or opponents for board games. Based on our definition
of problem structure, we provide an automatic procedure for problem
structure extraction, and results of proof-of-concept experiments. The
definition of problem structure assigns a precise meaning to the notion
of the underlying objectives of a problem, a concept which has been used
to explain how one can evaluate individuals in a coevolutionary setting.
The ability to analyze and represent problem structure may yield new
insight into existing problems, and benefit the design of algorithms for
learning and search.

1 Introduction

Most problems studied in artificial intelligence possess some form of structure.
Taking chess as an example, different players can be compared with regard to
strategy, tactics, and other aspects of their play. Thus, there are several dimen-
sions along which the behavior of players can be compared. Precise knowledge of
such problem structure would benefit both our insight into problems and the de-
sign of algorithms. It has so far been unclear however how such dimensions might
be defined precisely, and how informative dimensions might be determined. We
investigate how these notions can be made precise, and propose a formal defini-
tion of problem structure. Based on this, we describe an automatic mechanism
to explore and represent problem structure.

We consider problems where the performance of a candidate solution, or
candidate for short, is determined by the outcomes of tests. We consider problems
where the performance of a candidate is determined by the outcomes of tests.
For example, a classifier may be evaluated on the errors it makes in classifying
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test examples; an evolved checkers player may be evaluated on its scores against
some set of opponents; and a sorting network can be evaluated on its ability to
sort test sequences. This class of test-based problems defines a broad range of
problems.

The structure of a problem consists of a space and a mapping of the candi-
dates and tests into this space. The structure space is such that the outcome of
a candidate on any test can be uniquely determined given only the coordinates
of the candidate. Furthermore, a structure space is of minimum dimension gi-
ven this constraint. The structure space captures essential information about a
problem in an efficient manner.

Since the quality of a candidate is determined by its outcomes on tests, tests
may be viewed as objectives in the sense of Multi-Objective Optimization (MOO;
see [1], e.g.). In this view, the structure space may be seen as a projection of
the tests onto a smaller set of dimensions or objectives, such that a one-to-one
mapping exists between the candidate objective vectors for the two spaces. This
resulting set of objectives will typically be unknown at first, but is fundamental
in the sense that it represents all relevant relations between candidates and
tests in an optimally compact way. The axes spanning the structure space may
therefore be called the underlying objectives of a problem. The term underlying
objectives was first introduced in work on coevolution [2], where it was observed
that the tests in a coevolutionary algorithm tended to identify the objectives
that governed the evaluation of learners. A simpler version of the same idea was
presented in the form of the ideal test set and test dimension of [3].

In the realm of machine learning of game strategies, Arthur Samuel notes
that terms for the evaluation polynomial of his checkers player should ideally
be generated by the learning program itself. Samuel mentions the idea of an
orthogonal set of terms to be used in this evaluation polynomial [4]. Along similar
lines, Susan Epstein has argued that to be optimized, a game player should
experience a variety of opponents with varying skill levels [5]. We feel the present
work offers a precise way to discuss concepts like “orthogonal set of terms,” and
to clarify which variety of opponents a game player requires to be optimized.

The structure of this paper is as follows. In section 2, we present a ma-
thematical definition of a coordinate system for a test-based problem. We give
an example from geometry to motivate our choice of definitions, and explore
some of the properties and implications of the definitions. In section 3, we pre-
sent a polynomial-time dimension-extraction algorithm which, given a problem,
constructs a coordinate system for it. The coordinate system need not be mi-
nimal, but it is guaranteed to span the problem in a certain sense and satisfy
an independence criterion. Finally, in section 4, we present some experimental
validation of the formal and algorithmic ideas. We run the dimension-extraction
algorithm on the population in a coevolutionary simulation run on a game with
known dimension; we see that the algorithm correctly deduces the dimension or
overestimates it, depending on the game.
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2 Geometrical Problem Structure

Let p : S × T → 2 be any function, where S and T are finite sets1 and 2 is the
partially ordered set 0 < 1. Here the set S is interpreted as the set of candidate
solutions; T is the set of tests or test cases, and 2 is the outcome of applying a
test to a candidate. The function p encodes the interaction between a test and
a candidate; intuitively, we can think of it as a payoff function. Such functions
appear often in optimization and learning problems. For example:

Example 1 (Function approximation). Let f : T → IR be a target function
defined over a set T , and let S be a set of model functions T → IR. The problem
is to find a function in S that matches f as closely as possible. Notice that if
h ∈ S is some candidate function, then a point t ∈ T can serve as a test of h. For
example, we can define p : S × T → 2 by p(h, t) = δ(f(t), h(t)), δ the Kronecker
delta function.

Example 2 (Chess). Let S = T = {deterministic chess-playing strategies}. For
any two strategies s1, s2 ∈ S, define p(s1, s2) = 1 if s1 beats s2, 0 otherwise.
Then p is of form S × T → 2.

Example 3 (Multi-objective Optimization). Let S be a set of candidate solutions,
and for each 0 ≤ i ≤ n−1, let fi : S → 2 be an objective. The optimization task
is to find (an approximation of) the non-dominated front of these n objectives.
Let T = {f0, . . . , fn−1}, and define p : S × T → 2 by p(s, fi) = fi(s) for any
s ∈ S, fi ∈ T .

In this section, we will use such a function p to define an abstract coordinate
system on the set S. This coordinate system will give a precise meaning to the
notion of underlying objectives. In all of our examples, S will be finite. At first
glance it is not obvious what a coordinate system on a finite set might look like.
One of the major contributions in this paper is forwarding an idea about how
we might do that.

2.1 Motivation

As a motivating example for the definitions to follow, let us consider the 2-
dimensional Euclidean space E2, namely the set IR × IR with its canonical coor-
dinate system and pointwise order. Write x : E2 → IR and y : E2 → IR for the
two coordinate axes; for any point in E2, the function x returns the point’s x
coordinate and the function y returns its y coordinate. p ≤ q holds for two points
p, q ∈ E2 exactly when x(p) ≤ x(q) and y(p) ≤ y(q) both hold. Now consider
these two families of subsets of E2. For each r, s ∈ IR:

Xr = {p ∈ E2|x(p) ≥ r} (1)
Ys = {p ∈ E2|y(p) ≥ s} (2)

1 The finiteness assumption is not strictly necessary, but it greatly eases the exposition.
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Geometrically, Xr is the half plane consisting of the vertical line x = r and
all points to the right of it. Ys is the half plane consisting of the horizontal line
y = s and all points above it. Figure 1 illustrates these two families.

x

y

r

rX

y

x

s

Ys

Fig. 1. Typical members of the families X and Y; see text for details.

For brevity, let us write X for the family (Xr)r∈IR and Y for (Ys)s∈IR. In
other words, an element of the family X is one of the sets Xr, and an element of
Y is one of the sets Ys. We would like to show that X and Y can act as stand-ins
for the coordinate functions x and y. In particular, X and Y satisfy the following
three properties:

1. Linearity: For all r, s ∈ IR, Xr ⊂ Xs or Xs ⊂ Xr. Furthermore, Xr = Xs

implies r = s. Similarly, Yr ⊂ Ys or Ys ⊂ Yr and Yr = Ys implies r = s.
2. Independence: There exist r, s ∈ IR such that Xr and Ys are incomparable;

that is, neither is a subset of the other.
3. Spanning: For all p ∈ E2 define f(p) = inf

r
{p ∈ Xr} and g(p) = inf

r
{p ∈ Yr}.

Then f and g are well-defined functions from E2 to IR, and p ≤ q in E2
exactly when f(p) ≤ f(q) and g(p) ≤ g(q) both hold.2

Property 1 states that the family X is linearly ordered by ⊂; Y is as well.
Property 2 states that the two families X and Y give independent information
about E2. Finally, property 2 states that X and Y can together be used to
recover the order on E2; this is the sense in which they span the space.

Properties 1-2 make no reference to the special qualities of E2. In fact, they
require only the family X ∪ Y of subsets of E2. Since we can define families of
subsets in any set, particularly finite ones, these three properties are a suitable
abstract notion of coordinate system which can be fruitfully extended to finite
sets.

2.2 Terminology

We will require some terminology from discrete math, which we review next.
Recall that a preorder on a set S is a reflexive, transitive, binary relation on

S. Unless we state otherwise, the symbol ≤ will be used for preorders; we will also
2 In this example f = x and g = y. This property is the definition of the order on E2

in disguise.
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write s1 ≥ s2 to mean s2 ≤ s1. The reflexive property means that for any s ∈ S,
s ≤ s holds. The transitivity property means that for any three s1, s2, s3 ∈ S,
s1 ≤ s2 and s2 ≤ s3 together imply s1 ≤ s3. A preorder is similar to a partial
order. Partial orders are also antisymmetric, meaning: whenever s1 ≤ s2 and
s2 ≤ s1 both hold, it must be that s1 = s2. In a preorder, antisymmetry may
fail: both these relations may hold, but it may still be that s1 �= s2. Preorders
commonly arise from functions into sets that are already ordered. For instance,
if f : S → IR, then we can compare two s1, s2 ∈ S using f . Namely, there is a
preorder ≤f on S defined: s1 ≤f s2 exactly when f(s1) ≤ f(s2). Antisymmetry
of ≤f is then equivalent to f being injective.

A linear order is a partial order which satisfies the trichotomy law : for any
two s1, s2, either s1 ≤ s2, s2 ≤ s1, or s1 = s2 must hold. A partial order need
not satisfy this property. In other words, a partial order can have incomparable
elements, meaning two s1, s2 ∈ S such that neither is ≤ the other. The canonical
example of a partial order is the power set of a set. The power set is partially
ordered by inclusion: given any two subsets of a set, it need not be true that one
is a subset of the other. We refer the reader to a discrete mathematics text such
as [6] for more details and discussion of these concepts.

2.3 Coordinate Systems

Before defining a coordinate system on S, we will need some preliminary defini-
tions to simplify notation.

Let p : S × T → 2 be any function on the finite sets S and T . For each
t ∈ T , define the set Vt = {s ∈ S|p(s, t) = 0}. The set Vt is therefore the
subset of all candidates which do poorly against the test t. We can use these
sets to define a preordering on T . Namely, define t1 ≤ t2 if Vt1 ⊂ Vt2 . Observe
that in general this will be a preorder: there is no guarantee that Vt1 = Vt2

implies t1 = t2. However, reflexivity and transitivity hold. It will be convenient
to define two formal elements t−∞ and t∞ and extend the order ≤ from T to
T = T ∪ {t−∞, t∞} by defining t−∞ < t < t∞ for all t ∈ T . That is, t−∞ and
t∞ are respectively the minimum and maximum of ≤ extended to T . For any
subset U ⊂ T , we will write U for U ∪ {t−∞, t∞}. Under the mapping t �→ Vt,
t−∞ corresponds to ∅ and t∞ corresponds to S. This formal device will make
certain arguments easier. In particular, for any s ∈ S and any U ⊂ T , there will
always be t1, t2 ∈ U such that p(s, t1) = 0 and p(s, t2) = 1. U will always have
a minimum and a maximum.

[3] argues that a function like p induces a natural ordering on the set S
which is related to the idea of Pareto dominance in multi-objective optimization.
We argue that this ordering captures important information about how two
candidate solutions in S compare to one another in an optimization problem
defined by p. Let us write 
 for this ordering; then for any s1, s2 ∈ S, s1 
 s2
holds if p(s1, t) ≤ p(s2, t) for all t ∈ T . For instance, in the multi-objective
optimization example, s1 
 s2 exactly when fi(s1) ≤ fi(s2) for all objectives
fi ∈ T . In the multi-objective optimization literature the latter condition means
s2 covers s1.
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With these preliminaries, we can define a coordinate system on S. The sets
Vt will play a role analogous to the Xr and Yr above. The ordering 
 on S is
the one we wish to span.

Definition 1 (Coordinate System). A family T = (Ti)i∈I of subsets of T is a
coordinate system for S (with axes Ti) if it satisfies the following two properties:

1. Linearity: Each Ti is linearly ordered by ≤; in other words, for t1, t2 ∈ Ti,
either Vt1 ⊂ Vt2 or Vt2 ⊂ Vt1 .

2. Spanning: For each i ∈ I, define xi : S → Ti by: xi(s) = min
t∈Ti

{s ∈ Vt} =

min
t∈Ti

{p(s, t) = 0}, where the minimum is taken with respect to the linear

ordering on Ti. Then, for all s1, s2 ∈ S, s1 
 s2 if and only if ∀i ∈ I, xi(s1) ≤
xi(s2).

The definition of xi(s) as the minimal t ∈ Ti such that p(s, t) = 0 implies
that p(s, t) = 1 for all t < xi(s). The requirement that Ti be linearly ordered
guarantees that if s ∈ Vt1 and t1 < t2, then s ∈ Vt2 as well. It follows that if
t > xi(s), then s ∈ Vt; i.e., p(s, t) = 0. Consequently, if Ti = {t0 < t1 < · · · < tki

}
is an axis and xi(s) = tj , we can picture s’s placement on the axis like this:

p(s, t) 1 1 . . . 1 0 . . . 0
Ti t0 −→ t1 −→ . . . −→ tj−1 −→ tj −→ . . . −→ tki

This picture is the crux of what we mean by “axis.” For any candidate s,
the above picture holds. s’s coordinate on a particular axis is exactly that place
where it begins to fail against the tests of the axis. Intuitively, we can think
of an axis as representing a dimension of skill at the task, while s’s coordinate
represents how advanced it is in that skill.

We have not assumed independence because we would like to consider coor-
dinate systems that might have dependent axes. Much as in the theory of vector
spaces, we can show that a coordinate system of minimal size must be indepen-
dent. However, as we will see shortly, in this discrete case there is more than one
notion of independence which we must consider.

Definition 2 (Dimension). The dimension of S, written dim(S), is the mini-
mum of |T | taken over all coordinate systems T for S.

Remark 1. Because S and T are finite, dim(S) will be well-defined if we can
show at least one coordinate system for S exists. We will do so in section 2.4.

In the meantime, let us assume coordinate systems exist and explore some
of their properties.

Definition 3 (Weak Independence). A coordinate system T for S is weakly
independent if, for all Ti, Tj ∈ T , there exist t ∈ Ti, u ∈ Tj such that Vt and Vu

are incomparable, meaning neither is a subset of the other.
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Then we have a theorem reminiscent of linear algebra:

Theorem 1. Let T be a coordinate system for S such that |T | = dim(S). Then
T is weakly independent.

Sketch of Proof. Suppose T is not weakly independent. Then there are two axes,
call them Ti and Tj , such that all tests in Ti are comparable to all tests in Tj .
Consequently, we can create a new coordinate system T ′ as follows. First, T ′

has all the axes as T except Ti and Tj . Create a new axis Tk by forming Ti ∪ Tj

and then arbitrarily removing duplicates (which are t, u such that Vt = Vu). The
resulting Tk is then linearly ordered, and so can be an axis. Put Tk in T ′. Then,
T ′ is also a coordinate system for S, but |T ′| is one less than |T |, contradicting
the fact that T was minimal. Thus, T must be independent. �

2.4 Existence of a Coordinate System

In this section we prove that any function p : S×T → 2 with S and T finite gives
rise to a coordinate system on S. Simply put, the set of all chains in T satisfies
definition 1. Once we can show one such coordinate system exists, we know that
a minimal one exists and there is a reasonable notion of the dimension of S.

Definition 4. A chain in T is a subset C ⊂ T such that, for all t1, t2 ∈ C,
either Vt1 ⊂ Vt2 or Vt2 ⊂ Vt1 ; further, Vt1 = Vt2 implies t1 = t2.

Let C be the set of all chains in T . Then:

Theorem 2. C is a coordinate system for S.

Proof. Write C = (Ci)i∈I . By definition, each Ci is linear. Thus we need only
check that this family spans 
.

(⇒) Assume s1 
 s2. We want to show ∀i, xi(s1) ≤ xi(s2). Consider a Ci ∈ C
and imagine Ci = {t0 < t1 < · · · < tki}. If xi(s1) �≤ xi(s2), i.e. xi(s1) > xi(s2),
we must have the following situation:

p(s1, t) 1 1 . . . 1 1 . . . 1 0 . . . 0
Ci t0 → t1 → . . . → tj2−1 → tj2 → . . . → tj1−1 → tj1 → . . . → tki

p(s2, t) 1 1 . . . 1 0 . . . 0 0 . . . 0
Ci t0 → t1 → . . . → tj2−1 → tj2 → . . . → tj1−1 → tj1 → . . . → tki

where xi(s1) = tj1 and xi(s2) = tj2 . However, then p(s1, ti2) > p(s2, ti2),
which contradicts the assumption that s1 
 s2. Thus, xi(s1) ≤ xi(s2). This
argument holds for any Ci and any s1, s2 ∈ S; therefore we have our result.

(⇐) Assume ∀i ∈ I, xi(s1) ≤ xi(s2). We have the following for each Ci ∈ C:
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p(s1, t) 1 1 . . . 1 0 . . . 0 0 . . . 0
Ci t0 → t1 → . . . → tj1−1 → tj1 → . . . → tj2−1 → tj2 → . . . → tki

p(s2, t) 1 1 . . . 1 1 . . . 1 0 . . . 0
Ci t0 → t1 → . . . → tj1−1 → tj1 → . . . → tj2−1 → tj2 → . . . → tki

where xi(s1) = tj1 and xi(s2) = tj2 . It is clear from the diagram that for
all t ∈ Ci, p(s1, t) ≤ p(s2, t). This fact holds for any Ci. That is, we have for all
t ∈

⋃

i∈I

Ci, p(s1, t) ≤ p(s2, t). However,
⋃

i∈I

Ci = T , meaning we have s1 
 s2.

Combining the above two implications, we have shown that s1 
 s2 if and
only if ∀i ∈ I, xi(s1) ≤ xi(s2), for any s1, s2 ∈ S. Hence, C is a coordinate system
for S, as we set out to show. �

3 Dimension-Extraction Algorithm

In this section we give a polynomial-time algorithm that finds a weakly-
independent coordinate system for a set of candidates. The algorithm accepts
as input a set of candidates, a set of tests, and the outcome of each candidate
for each test. Given this input, the goal is to construct a coordinate system such
that (i) the position of a candidate in the constructed space uniquely identifies
which tests it passes and fails, and (ii) the dimension of this coordinate system
is minimal. Since an efficient optimal algorithm is not available, an algorithm
will be presented that satisfies (i) but uses heuristics to minimize the dimension,
and is therefore not guaranteed to satisfy (ii).

The main idea of the algorithm is as follows. We start out with an empty
coordinate system, containing no axes. Next, tests are placed in the coordinate
system one by one, constructing new axes where necessary. A new axis is required
when no axis is present yet, or when a test is inconsistent with tests on all
existing axes. Two tests t, u are inconsistent if Vt and Vu are incomparable. We
now discuss two aspects of coordinate systems that inform our algorithm.

In a valid coordinate system, the tests on each axis are ordered by strictness;
any test must at least fail the candidates failed by its predecessors on the axis.
This knowledge informs our heuristic for choosing the order in which to consider
tests: the first step of the algorithm is to sort the tests based on the number of
candidates they fail.

A second aspect of coordinate systems is that a test whose set of failed
candidates is the union of the sets of candidates failed by two other tests can be
viewed as the combination of those tests. For example, if a test A on the first
axis fails candidates 1 and 3 and a test B on the second axis fails candidates 2
and 5, then a test located at position (A,B) in the coordinate system must fail
the union of the candidate sets: candidates 1,2,3, and 5. Since such a composite
test provides no additional information about which tests a candidate will pass
of fail, it can be safely discarded. Therefore, the second step of the algorithm is
to remove any tests that can be written as the combination of two other tests.
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Once the tests have been sorted and superfluous tests removed, the proce-
dure is straightforward; tests are processed in order and are either placed on an
existing axis if possible, or on a new axis if necessary. The pseudocode of the
algorithm is as follows:

Input:
List candidates, tests
boolean play(cand, test)
boolean consistentWith(test1, test2)
Test and(test1, test2)

Output:
Tree dimensions

Algorithm:
sort tests by number of fails
for each test1, test2, test3 ∈ tests (with test1 �= test2 �= test3)

if test3 = and(test1, test2)
remove test3 from tests

end
end

for each test ∈ tests
for each leaf ∈ dimensions

if consistentWith(test, leaf)
add test as child to leaf

end
if test was not added to a leaf

add test as new leaf to root of dimensions
end

end
end

Fig. 2. Algorithm for coordinate system construction. The algorithm accepts sets of
candidates and tests and their outcomes, and constructs a coordinate system that
reflects the structure of the problem. Axes in this coordinate system consist of tests,
and the location of a candidate in this induced space uniquely identifies which tests it
will fail or pass.

4 Experiments

As a validation of the ideas presented in the previous sections, we applied our
dimension-extraction algorithm to the populations of a coevolutionary simula-
tion. Here we report the procedure we used and the results of the experiments.
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Naturally, the question arises whether this algorithm will really extract useful
coordinate systems from a problem. This question clearly bears much further
empirical study. Here we are content to address the simpler question of whether
the dimension extraction algorithm will give meaningful answers for particular
problems in which we know what the underlying objectives are.

4.1 Method

The algorithm of fig. 2 was applied to the populations in a variant of the Po-
pulation Pareto Hill Climber (P-PHC) algorithm presented in [7]. Briefly, a po-
pulation of candidates and a separate population of tests is maintained by the
algorithm. At each time step, the tests are treated as objectives that the can-
didates are trying to maximize. Each candidate is given a single offspring, and
the parent is replaced if the offspring does at least as well as the parent on each
test.

Tests are incented to find distinctions between candidates. If a and b are two
candidates, a test t makes a distinction between them t(a) �= t(b). Each test is
given one offspring; an offspring replaces its parent if it makes a distinction the
parent does not make. It is possible for an offspring to lose distinctions which the
parent also makes; we are not concerned with this possibility in this algorithm.
Except for this variation in test selection, all other algorithm details are the
same as those reported in [7].

Two numbers games were used as test problems [8]. The first domain was the
Compare-on-One game presented in [2]. In this game, candidates and tests are
both n-tuples of numbers. c and t are compared on the single coordinate where
t is maximal. c “wins” the game if it is larger than t on that coordinate. This
game has been shown to induce a pathology known as “focusing” or “overspe-
cialization;” in conventional coevolutionary algorithms; see [7] or [2] for details.

The second domain was the Transitive game. Again, candidates and tests
are n-tuples of numbers. This time, when a candidate c interacts with a test t,
c wins if it is at least as large as t on all dimensions.

Observe that the coevolutionary algorithm does not have access to the fact
that individuals are tuples of numbers. The games are given as black boxes to
the P-PHC algorithm and it must make best use of this win/loss information.
Consequently, when we run our dimension-extraction algorithm on the P-PHC
populations, we are hoping to see the algorithm discover the number n which is
the true dimension of the game.

We used the following procedure to estimate the number of dimensions. 10
independent copies of P-PHC were run for 2,000 time steps. At each time step,
the estimated number of dimensions in the current population was output ac-
cording to the dimension-extraction algorithm. This value was averaged across
the 10 runs to obtain a single “average run.” Then the following statistics were
calculated across all 2,000 time steps: the 10th and 90th percentiles; the upper
and lower quantiles; and the median. The number of true dimensions of the un-
derlying problem was varied from 1 to 16 and statistics were gathered for each
number of dimensions.
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4.2 Results

Our results are presented in figure 3. These figures are box plots of the estimated
number of dimensions versus the true number of dimensions. The boxes span the
lower and upper quartiles of the dimension estimates; the whiskers give the 10th
and 90th percentiles. The plus marks the median of the dimension estimates.
The dotted line gives the expected answer.

The figure on the left gives the results for Compare-on-One. There is good
agreement between the estimated value of the number of dimensions and theo-
retical value for dimension ranging from 1 to 16. Further, the variance in the
estimates is generally quite small.

The figure on the right gives the results for Transitive. In this case the
algorithm consistently overestimates the number of dimensions of the problem.
There is a larger amount of variance in the estimate as well when compared with
Compare-on-One. We only display up to 10 dimensions in the figure, enough
to see the trend.
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Fig. 3. Estimated number of dimensions in two numbers games, applying the algo-
rithm in fig. 2 to the populations of a coevolutionary algorithm; see text for details.
The left figure is the estimate for the Compare-on-One game; note the tight corre-
spondence with the theoretical number of dimensions. On the right is the estimate for
the Transitive game; here the algorithm consistently overestimates.

5 Conclusions

A notion of problem structure with application to a broad class of problems in
artificial intelligence, including learning and search, has been proposed. Problem
structure here takes the form of a coordinate system whose axes consist of tests,
and knowledge of the position of a test uniquely specifies the behavior of that
test.

The structure of a problem is an intrinsic property. Thus, any existing pro-
blems for which candidates are evaluated using tests must have an associated
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coordinate system of the kind defined in this paper. For most problems, the
question of what the underlying objectives are is new, and it is given a precise
meaning by the definition of problem structure presented here. The definition,
and the preliminary algorithm for extracting problem structure, may therefore
yield new insight into existing problems. While computationally challenging, this
permits asking intriguing questions such as: what is the dimension of chess, and
what are the underlying dimensions of chess?

The formal definition of problem structure that has been presented directly
suggests ways of extracting problem structure automatically. A preliminary algo-
rithm for coordinate system construction has been provided, and demonstrated
on example problems. It is our hope that the notion of problem structure that
has been proposed may incite the study of problem structure as a general pro-
perty of problems; if efficient algorithms for problem structure extraction can
be identified, it may become possible to better understand existing problems of
interest by the algorithmic analysis of their structure, thereby providing new
insight into existing problems in an automatic manner.
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